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We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD

generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum of eigenvalues

into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as

expected from the Index Theorem, and their chirality expectation value is large. The remaining modes have low

chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions

for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the

staggered quarks closer to the continuum limit where they respond correctly to QCD topology.

1. INTRODUCTION

Topology plays a key role in our understanding
of some important features of QCD, such as the
axial anomaly, or the η′ mass.

In the continuum, the Index Theorem relates
the topological charge of a smooth gauge field
with the number of chiral zero modes of the cor-
responding Dirac operator.

For QCD in the ε regime, there are detailed
predictions of the distribution of the low-lying
eigenvalues of the Dirac operator, in each sector
of fixed topological charge.

A correct discretization of QCD must repro-
duce these features, at least in the continuum
limit. Furthermore, in order to use such dis-
cretizations in practice to tackle calculations re-
lated to topology, we would like to see such topo-
logical properties manifesting themselves at val-
ues of the parameters at which we can realistically
do simulations.

It has been widely held that the staggered
discretization of QCD is insensitive to topology.
Previous studies did not find, in the raw, non-
smoothed gauge field configurations, signs of an
Index Theorem, and the predictions of RMT were
not reproduced; the calculations in all sectors of
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fixed topological charge gave the same results, in
agreement with the theoretical predictions for the
sector of zero topological charge.

There are large-scale simulations using stag-
gered fermions today [1,2], and more are planned
for the near future. It is therefore important to
understand to what extent staggered quarks show
the correct topological properties.

2. STAGGERED DIRAC OPERATORS

All the Dirac operators we study have the gen-
eral form:

S =
∑
x,y

χ̄(x) /D(x, y)χ(y) (1)

with /D a gauge-invariant linear operator. The
first example is the one-link staggered Dirac op-
erator (also called naive, unimproved staggered
or Kogut-Susskind in the literature):

/D(x, y) = 1

2u0

∑
µαµ(x)(Uµ(x)δx+µ,y − H.c.) (2)

αµ(x) = (−1)
P

ν>µ
xν (3)

This Dirac operator has some simple properties,
which are shared with all the improved operators
we will introduce later. First, it is antihermitian,
/D† = − /D. It also obeys a remnant of the contin-
uum γ5 anticommutation relation:

{ /D, ε} = 0, with ε(x) = (−1)
P

µ
xµ (4)
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Figure 1. paths entering the asq(tad) operator

As a consequence of these two properties, its
spectrum is purely imaginary and eigenvalues
come in complex-conjugate pairs,

sp( /D) = {±iλ, λ ∈ <} (5)

This operator corresponds (in four dimensions)
to 4 “tastes” of fermions. There are unphysi-
cal taste-changing interactions, involving at lead-
ing order the exchange of a gluon of momentum
q ≈ π/a. Such interactions are perturbative for
typical values of the lattice spacing, and can be
corrected systematically à la Symanzik. This can
be accomplished by smearing the gauge field to
remove the coupling between quarks and gluons
with momentum π/a [3–7]. Including appropri-
ate paths up to length seven leads to the so-
called fat7 operator. By adding two more terms
(the five-link Lepage term and the three-link Naik
term), we obtain an operator improved to order
a2 at tree level, called asq. If we also add tadpole
improvement we get the asqtad operator.

Another improved staggered Dirac operator,
motivated by perfect action ideas, is the hyp op-
erator, which involves three levels of (restricted)
APE smearing with projection onto SU(3) at
each level. The restrictions are such that each fat
link includes contributions only from thin links
belonging to hypercubes attached to the original
link. [8].

The final improved staggered operator we will
consider here is the so called hisq (Highly Im-
proved Staggered Quarks) operator, which in-

Table 1
Parameters of the improved gauge ensembles

Volume 124 164 124

a (fm) 0.093 0.093 0.125
Length (fm) 1.12 1.49 1.50

volves two levels of smearing: first a FAT7 smear-
ing on the original links, followed by a projec-
tion onto SU(3), then asq on these fattened links
[9,10].

Both hyp and hisq show much smaller taste-
changing effects than asqtad.

3. DETAILS OF THE SIMULATION

Most of our results come from gauge configu-
rations generated using a gauge action which is
Symanzik-improved at tree level, including tad-
pole improvement. We have three different en-
sembles of about 1000 configurations each, whose
parameters are shown in table 1. We will refer to
the configurations by their volume, and whether
they correspond to the fine, a = 0.093 fm ensem-
ble or to the coarse, 0.125 fm one. The topological
charge Q is determined by cooling the fields and
then using a highly accurate discretization of the
continuum expression. We do the cooling with
two different actions to check for consistency. The
value of Q for lattice gauge fields is not, in gen-
eral, unambiguously defined, and therefore the
values obtained with the two methods do not al-
ways coincide. This happens in about 10% of the
configurations.

We have also used a few Wilson (unimproved)
gauge configurations, with a lattice spacing of
a = 0.093, and a volume of 163 × 32.

4. SPECTRUM AND INDEX THEO-

REM

4.1. Continuum

The eigenmodes of the anti-hermitian, gauge-
covariant, massless continuum Dirac operator are
given by

/Dfs = iλsfs , λs ∈ R . (6)
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where we use orthonormalised eigenvectors,
f †

s ft = δs,t. As { /D, γ5} = 0 , the spectrum is
symmetric about zero: if λs 6= 0, then γ5fs is also
an eigenvector with eigenvalue −iλs, and chiral-
ity χs ≡ f †

s γ5fs = 0. The zero modes, λs = 0,
can be chosen with definite chirality: χs = ±1.
In general there are n± such modes, whose rela-
tive number is fixed by the (gluonic) topological
charge

Q =
1

32π2

∫
d4x εµνστ Tr Fµν(x)Fστ (x) (7)

via the Atiyah–Singer Index Theorem [11,12]

Q = m Tr
γ5

/D + m
= n+ − n− , (8)

where m is the quark mass.

4.2. Chiral lattice discretizations

On the lattice, Dirac operators that satisfy the
Ginsparg-Wilson relation

{γ5, /D} = a /Dγ5 /D (9)

can have exact, chiral zero modes, which then
may be used to define a topological charge [13]:

Q = a4
∑

x q(x) = n+ − n− (10)

q(x) = − 1

2
a Tr {γ5 /D(x, x)} (11)

where q(x) is a local, gauge-invariant function of
the gauge fields.

For the fixed-point Dirac operator, further-
more, there is a genuine Index Theorem at finite
cutoff [13],

QFP = n+ − n− (12)

where QFP is a purely gluonic operator with the
characteristics of a proper topological charge.

4.3. Staggered discretization

The staggered Dirac operator has no exact zero
modes, and therefore we cannot expect to have
an exact Index Theorem. However, close to the
continuum limit, we should see an approximate
version of the continuum behaviour: the first few
eigenmodes with high chirality, in the number re-
quired by the continuum Index Theorem, and the
rest of the eigenmodes with small chirality.

This is known to happen with sufficiently
smooth gauge fields , obtained, for example, by
repeated smearing [14,15], or by a lattice dis-
cretization of continuum instantons [16].

However, we are interested here in the prop-
erties of the raw, non-smoothed configurations,
where such behaviour was not found in previous
studies with unimproved staggered quarks [17–
19]. We want to understand to what degree the
continuum features are already present in gauge
fields from ensembles generated with parameters
used in typical present-day simulations.

To test this we compute the topological charge
and the chirality of the first few eigenmodes for
the gauge fields in our ensembles. The staggered
version of the continuum γ5 operator relevant for
this calculation must be a taste-singlet operator,
in order for it to couple to the vacuum. We use
a gauge-invariant, point-split four link operator
[20].

Taking into account that the staggered dis-
cretization describes 4 tastes, we expect to have a
quadruple near-degeneracy in the spectrum. Fur-
thermore, if an approximate Index Theorem ap-
plies, we expect to see 4 n+ approximate zero
modes with chirality near 1, and 4 n− approxi-
mate zero modes with chirality near -1, with n+,
n− such that

Q =
1

4
(n+ − n−) (13)

We show in fig. 2 and 3, for several staggered
Dirac operators, the absolute value of the first
low-lying eigenvalues, as well as the correspond-
ing chirality, for typical configurations with topo-
logical charge Q = 2. Fig. 2 corresponds to
a configuration generated with the Wilson gauge
action, whereas fig. 3 is for the improved gauge
action. Due to the exact symmetry (5), we plot
only half of the spectrum (in particular, there are
an equal number of near-zero modes in the other
half, and therefore only 2Q of them are seen in
the figures.)

We can see a strong difference between the Wil-
son and the improved gauge configurations. For
the one-link operator neither of them show much
of the continuum-like behaviour. As we improve
the operator, the agreement for the Wilson glue
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Figure 2. The absolute value of a typical low-
lying eigenmode (half ) spectrum for a 163 × 32
Wilson gauge configuration of Q = 2, for vari-
ous staggered fermion formulations. The bottom
panel gives the absolute value of the eigenvalue,
λs, ordered according to increasing size. The x
axis is then simply eigenvalue number. The top
panel is the chirality of the modes.
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Figure 3. as in fig. 2, for a fine 164 improved
gauge configuration with Q = 2. The hyp ac-
tion gives results very similar to hisq and is not
plotted here for clarity.

is at best qualitative, showing an increased chi-
rality for the low eigenmodes, and a hint of the
expected degeneracy in the spectrum. For the im-
proved gauge glue, however, we see the non-zero
eigenvalues clearly grouping in quadruplets, and
a sharp separation between chiral and non-chiral
modes. The Index Theorem is well approximated
for the hisq operator, with the expected number
of near-chiral modes.

To give an idea of how generic this behaviour
is, we show in fig. 4 a scatter plot of the abso-
lute value of the chirality vs the absolute value of
the eigenvalues for a number of improved gauge
configurations. As we improve the Dirac oper-
ator, a gap develops between the high-chirality,
near-zero modes, and the low-chirality, non-zero
modes. The chirality of the near-zero modes is
remarkably constant over the different configu-
rations, with a value of around 0.7. The sep-
aration is not strict, however, and even for the
hisq operator there are configurations with low
modes of intermediate chirality. If we choose
some arbitrary threshold in the chirality to count
zero modes, let’s say over .65 in absolute value,
we can then use the Index Theorem to assign a
fermionic topological charge to the gauge field,
QF = n+ − n−. This charge coincides with
the one measured via cooling in about 90% of the
cases, and therefore the ambiguity in this defini-
tion is about the same as there is between the
two cooling methods for this value of the lattice
spacing.

In figure 5 we show the effect on the spectrum
of changing the volume (keeping the lattice spac-
ing constant) while keeping the Dirac operator
fixed, compared with changing the operator at
constant volume. As before, we need to use the
improved operator for see any degeneracy. How-
ever the lattice volume has a strong effect too,
and the degeneracy is most clear at the smaller
volume. If we were to increase the volume further,
eventually the degeneracy would not be evident
any more (the spectrum will become dense in the
infinite volume limit). However, even when not
obvious, it may still be present in some form, as
will be clear in our results for the ratios of eigen-
values.
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chirality on the y axis and eigenvalue λs on the
x axis. The lowest 50 eigenvalues for 147 config-
urations are plotted.
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Figure 5. Low lying (half) spectrum. The top
panel is a comparison of the one-link and the hisq
spectrum for a configuration in the fine 164 en-
semble. The bottom panel shows the hisq spec-
trum for the same configuration above, and for
a configuration at the same lattice spacing and
with 124 volume.

5. RANDOM MATRIX THEORY PRE-

DICTIONS

Based on [21], it has been suggested that, in the
ε regime of QCD (volume very large, but much
smaller than the pion length scale), and in each
sector of fixed topological charge Q, the non-zero
low-lying eigenmodes, appropriately scaled, take
values from a universal distribution, which only
depends on Q. [22]. The universality class is
determined by the chiral symmetries of QCD 2.
The distributions can be derived from any theory
in the correct universality class, such as ensembles
of random matrices [23,14] (for a review of other
theories, see [15]).

These predictions have been succesfully tested
in lattice QCD with Ginsparg-Wilson fermions
[24–29].

On the other hand, previous studies with unim-
proved staggered fermions (on much coarse lat-
tices and with Wilson action gauge fields) had
shown a very different behaviour, with the eigen-
values for any Q behaving according to the theo-
retical prediction for the Q = 0 sector 3 [30–34].

In order to test the universality predictions,
first we subtract from the spectrum the 4Q low-
est eigenvalues (2Q on either side of zero), which
should converge to zero modes in the contin-
uum limit, according to the Index Theorem. We
then group the remaining eigenvalues, ordered
by size, into sets of four, corresponding to the
four-fold degeneracy of the spectrum in the con-
tinuum limit. We then average the values in
each quartet, and denote the resulting averages
Λ1, Λ2, . . .. In fig. 6 we plot the ratios (denoted by
“s/t”) 〈Λs〉Q/〈Λt〉Q where the expectation values
〈·〉Q are over the sectors with gluonic topological
charges ±Q only. The universal predictions for
this ratios (which are independent of any scale)
are also shown on the figure.

The first thing to notice is the clear depen-
dence on Q, in stark contrast with previous re-
sults. The ratios are systematically below the

2And also the number of dimensions, the gauge group and

the representation in which the fermions lie.
3It should be noted that the method we follow here, of

grouping the eigenvalues into quartets, was not followed

because this feature of the spectrum was not evident.
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Figure 6. The ratios of expectation values of small
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the predictions based on a universal distribution
(horizontal lines) for topological charge sectors 0,
1 and 2.

theoretical predictions, especially the ones involv-
ing higher eigenvalues. This would be consistent
with finite volume effects as in [29]. There is also
a small but systematic difference between the one-
link and the improved actions, with the improved
results showing a better agreement with the the-
oretical values. As in [29] we find no significant
changes on the coarse lattice at the same V .

An important point to make here is that it is
necessary to group the eigenvalues as explained
above to get sensible results. If one ignores the
near zero modes, or does not group in quartets,
ratios which are close to one or very large will
result. This is strong evidence that the four tastes
are showing up in the spectrum, even where it is
not directly evident in the spectrum itself.

As we discussed before, there is a (small) am-
biguity in the determination of the topological
charge, so that the two cooling methods some-
times give a different answer for Q. One can
then either choose any one of the two methods
for defining Q, or use in the analysis only the

configurations for which both methods agree. We
have checked that it makes no difference to within
our statistical accuracy.

6. CONCLUSIONS AND OUTLOOK

Improved staggered fermions are not blind to
the topology, but in fact reproduce well the pre-
dictions of the Index Theorem, and the universal-
ity of ratios of eigenvalues as a function of topo-
logical sector. This means we can have confidence
in using them to attack the questions arising from
the axial anomaly in QCD.

We also remark that the fact that the 4-fold
taste degeneracy of staggered quarks is becoming
clear in the spectrum is encouraging for the pro-
gramme of establishing the effect of taking the
fourth root of the staggered determinant to rep-
resent one flavour of staggered sea quarks. This
programme requires an analysis in the taste basis
and progress towards this is now possible.

More extensive studies of finite volume and lat-
tice spacing effects and analysis of the eigenvec-
tors are underway and will be reported elsewhere.

Finally we would like to point out two talks
on related topics in this conference [35,36], show-
ing similarly encouraging aspects of the staggered
eigenvalue spectrum.
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